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A modified type of Marker and Cell computing method is presented for solving 
problems in incompressible hydrodynamics. The method is applicable to time de- 
pendent problems in two spatial dimensions or three spatial dimensions with axial 
symmetry. Details are presented for calculation of arbitrarily shaped curved wall 
boundaries and flexible moving wall boundaries. Example problems with moving wails 
and free surfaces are given. 

The MAC or Marker and Cell method is a technique for solving the time 
dependent Eulerian equations of incompressible hydrodynamics and is especially 
suited for flows containing free surfaces [I]. The method is based on representing 
the time dependent partial differential equations of momentum conservation by 
finite differences over a rectangular net of points. Substitution of the resulting 
expressions for the time advanced u and v components of velocity into a 
finite difference form of the continuity equation yields a finite difference 
approximation to a Poisson equation for the pressure. The solution is advanced 
in time by a series of repeated steps. First one solves the Poisson equation 
for the pressure which is then used in the momentum equations to calculate new 
velocity components. A new source term for the Poisson equation is calculated 
from the new velocity field and the cycle begins over again. Marker particles, 
moved with velocities interpolated from the Eulerian mesh point values, allow 
one to tell which of the rectangular finite difference cells contain free surface 
boundaries. The method has been used to compute wave motion, Taylor i~stab~~ity~ 
and the splash of a liquid drop [2-41. However engineering applications have been 
limited by the requirement that external wall shapes be confined to fixed rectangular 
segments of the Eulerian mesh. 

Recently, the limitation on wall boundary shapes has been overcome by treating 

* This work was performed under the auspices of the U. S. Atomic Energy Commission. 
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free slip rigid wall boundaries as if they were free surfaces with a pressure distri- 
bution applied in such a way that the free surface position coincides with the wall 
boundary [5]. To this end the usual iterative solution of the Poisson equation, 
followed by computation of new velocities, is replaced by an iteration method in 
which both the velocity and pressure are adjusted simultaneously. A special 
iteration formula for the pressure in free surface curved-wall boundary cells then 
permits calculation of the pressure distribution. This method of treating curved 
wall boundaries can be extended to include moving walls so that it is possible to 
calculate flows over objects that undergo large deformations or move about the 
mesh. This report gives more details of the arbitrary boundary method (ABMAC), 
some improvements, and the changes required for moving boundaries. 

SIMULTANEOUS ITERATION METHODS 

The dependent variables are u the radial component of the velocity, spatially 
centered at (k + 4, I), z, the axial component of the velocity centered at (k,Z + &), 
and P the pressure, centered at (k, I). There are many ways of differencing the 
equations for the components of the momentum. ABMAC includes an option for 
selecting either backward or centered spatial differencing in the advection terms. 
With time derivatives approximated by simple forward differences and spatial 
derivatives by centered differences the finite difference representation of the u 
component momentum equation is 

At 
- v - [v” 

ArAz k+l,l+t - v” 
k+l,Z-+ 

- v” 
k,l+i + v~,L~ 

‘k,Z] 

The old velocity, advection, body force, and viscous terms can b. 
together to give 

-ped 

p+1 
k+i,l = %,+,t - /c, A,. L [‘k+l,l - ‘k,,]* (lb) 
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The centered difference form for the z, component is 

which can be written 

For slab geometry 01 = 0 and for cylindrical symmetry 01 = 1. Quantities not 
directly available such as u~+~,~ are obtained by simple averaging. In the backwar 
difference formulation of the advection terms one would, for example, replace 

in the u component equation by 

and 

would be replaced by 

Similarly in the v component equation the backwards difference formulation of 
the advection terms would require replacement of 

~(V%,Z,l - (v2>;,J 
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[ I v; z+L if v; 1+1 > 0 
V~,Z,l @’ 2 ’ 

k z+s if v; z+l < 0 
1 I 

V” k z+A if v;,~ < 0 2 x 

- v;z 
1 

I 2 v; 3 
z--1 if > 0 

P v;,~ 11 
and 

The pressure field P&l is to be determined such that the advanced time velocity 
components u&!~,~ and v& obtained from (lb) and (2b) satisfy the continuity 
equation 

The pressure and the advanced time velocity fields may be solved for simultaneously 
by introducing the relaxation parameter AT and the following iteration formula 
for the i + 1 iteration value of the pressure field [6] 

pi+1 = pi 
k,Z k,z - Ar(V - V”+l);,, . (4) 

One method of iteration is: (a) use Eq. (4) to compute a new pressure field; 
(b) substitute the new pressure field into Eqs. (1 b) and (2b) and compute values for 
(u:::, $+l and (vJ&!i+l; (c) use the new velocities to compute new values of the 
divergence (V * vn+l)z+’ k, 1. Continue repeating these three steps until changes in the 
iterates Piyl , (zL~,+~,~)~ and (v;ET+$ fall below s ome small error limit. To save time 
do not recompute the advection and viscous terms at each cycle of iteration, but 
instead store them in the variables Y$++, I and EE, $++ . 

The nature of the iteration can be made clearer by substituting Eqs. (lb) and 
(2b) with Pk,& = P& into (3) and then substituting the result into (4). For the 
case iy. = 0, Ar = AZ = 6 one obtains 

Pi+; = Pi 1 + $$ [f’k+l,z + Pi-,,, -i- Pi&+, + P;,z-l - 4f’;,,l - AT Sk,, , (5) 

where Sk,, is a source function of the variables $++,1 and ,$ E,L++. This is the differ- 
ence equation one effectively solves when one adjusts all of the mesh pressures 
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before computing any new velocities. It is clear that it is just a finite difference 
representation of the partial differential equation 

ap = #p - s, 
a7 o = At/p. 

By continued iteration one approaches the asymptotic solution which is 

VP = s/CL (71 

Upon expanding S in terms of the mesh values of u and u contained in the q and [ 
temporary storage variables one would find that (7) is the usual Poisson equation 
for the pressure, including the divergence correction term for the error in the 
velocity at time nd t. 

A von Neumann Fourier analysis [7] of (5) shows that one must choose 
4~ < p62/4Llt, otherwise numerical instability will occur. It is important to note 
that the asymptotic approach of the diffusion equation (6) to the steady state is 
slow and that the simple relaxation equation (5) is very inefficient because of the 
restriction on the size of 8~. A very much improved formula, equivalent to succes- 
sive over relaxation, is obtained by replacing Pt& and P&1 with the latest 
iterates Pi?;,, and P& while sweeping in the direction of increasing k and 1. 
This yields 

A Von Neumann analysis of this equation yields the stability restriction 
6l7 < p@/2dt. The “time step,” d 7, can be made larger and also the equation has 
more damping than (5) so that the approach to the steady state is much quicker. 
In order to generate form (8) one must compute new iterates 

(“;;:p)i+l and 

a soon as one obtains P$ for a cell and before advancing to the next cell. Thus 
if one advances successively in the order of increasing k and increasing I, as 
indicated by the numbering of the cells in the example in Fig. 1, then the divergence 
used in calculating a new pressure iterate in cell (k, 1) will be based on velocities 
calculated with new pressure iterates in cells (k - 1, E) and (k, I - 1) and old 
pressure iterates in cells (k, I), (k + 1,Z) and (k, 1 + 1). Hence scheme (8) results. 

Sufficient accuracy is normally obtained if the iteration is continued until the 
ratio of the norm of the pressure changes to the norm of the pressures drops 
below .0008. For any particular set of boundary conditions there is an optimum 
value of AT for most rapid convergence. In very simple cases this value can 
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FIG. 1. Cell flags and order of calculation. 

computed theoretically but in most computations this is impractical. However, 
it is usually safe to assume that the optimum value occurs fairly close to the stability 
limit and to start calculations with AT at about .94Tm51X . 

FLEXIBLE CURVED WALL BOUNDARIES 

In the case of free-slip boundary conditions the motion of an interface between a 
liquid and a fIexible curved wall is equivalent to that of a free surface with an 
applied pressure distribution. Given any interfacial shape or motion one can 
produce that same shape or motion with some unique pressure distribution applied 
to a free surface. This is the basis for ABMAC boundary calculations. Since the 
MAC method already has a well developed technique for treating free surfaces 
it is only necessary that one find a way of relating the required pressure distribution 
to the motion and shape of the boundary. 

A moving flexible curved wall can be specified by a locus of points. These points 
might be the edge intersection points of a Lagrangian mesh covering the wall or 
body. For example one might b& solving the equations of elasticity for the wall 
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deformations produced by the liquid pressure. Or the points might be given by some 
prescribed analytic formula for the boundary shape and motion. In general the 
points will not lie on any of the Eulerian mesh lines used in the finite difference 
solution of thehydrodynamicequations. The first step is to connect successive points 
with straight lines and find all of the intersections of these line segments with the 
underlying Eulerian mesh. One can then represent the boundary section lying 
inside an Eulerian cell by a single straight line connecting the points of intersection 
of the boundary with the sides of the cell. Now of course it is possible to think 
of all sorts of situations where the boundary wanders in and out of a single cell 
creating some ambiguity. However this occurs only when there are an insuflicient 
number of zones to accurately calculate details of the flow. Therefore it is assumed 
that the Eulerian zoning is always fine enough so that the boundary has only two 

intersections with each cell. Having broken the boundary into a set of straight line 
segments, each associated with a unique Eulerian cell, one can specify the position 
of each segment by a unit vector normal to the boundary with base positioned at 
the midpoint of the segment. ABMAC uses the convention that the normal points 
towards the liquid and to the left as one advances from the ith to i + lth boundary 
point. Since the boundary may be moving it is also necessary to assign a velocity 
vector to the midpoint of the segment. If the boundary is part of a Lagrangia~ 
mesh one can calculate this velocity by linear interpolation from the values given 
at the corners of the Lagrangian mesh. Or the velocity may be specified by some 
input formula as a function of time and distance along the boundary. 

The second step is to find a good approximation to the boundary shape using 
segments of the Eulerian mesh and to define and flag Eulerian boundary cells as 
those along the inside edges of this approximate contour. This is not actually a 
very difficult computational task. With the normal convention decided upon one 
can easily calculate the liquid area of the boundary cells; then if the liquid fraction 
of the total cell area is greater than a set fraction, usually l/4, the boundary cell 
flag is turned on. If the liquid area fraction is too small one can determine which of 
the four neighboring cells the boundary segment normal points nearest to an 
then set the boundary flag for that cell. When that cell also contains a boundary 
segment the two segments can be replaced with one by removing the boundary 
intersection point between the two adjoining cells. This new segment, spanning 
two cells, is also defined by velocity and position vectors at its midpoint. Note 
that as a result of this selection process the midpoint of a boundary segment 
may not lie in the Eulerian boundary cell it is associated with. Thus it is sometimes 
necessary to assign a pointer to a boundary cell indicating which neighboring cell 
contains the midpoint of the associated boundary segment. Once the boundary 
cell flags have been set it is necessary to go through them and turn off the bounda 
flag in any cell in the corner of a right angle cell pattern, since such cells are bounded 
on two adjacent sides by either a pair of interior or exterior cells and on the other 
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two by boundary cells. Figure 1 shows a closed boundary curve, the approximate 
Eulerian boundary, and the cell flag pattern. It illustrates the various cases 
mentioned above. This process of defining a set of Eulerian boundary cells is 
analogous to the defining of a set of free surface cells in the MAC method but 
with the additional constraint that the resulting cell pattern avoid overdeterming 
the boundary condition on the pressure. Cells outside the Eulerian boundary are 
flagged as exterior cells so that one can tell when velocity components lie on the 
exterior sides of boundary cells. 

When the boundary is stationary the normals and Eulerian cell flags need to be 
determined only once at the beginning of the calculation; however when the 
boundary is moving it is necessary to regenerate the normals and cell flags each 
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FIG. 2. Interpolating scheme for obtaining the liquid velocity at the midpoint of a boundary 
segment. 
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time the solution is advanced d t in time. The change in position of the Lagrange hue 
defining the boundary, over the time interval L(lt, is obtained by multiplying the 
boundary velocity Vb(r, t) at the given point by fit. 

Once the boundary cells have been determined the following relaxation equation 
is used to compute the pressure in these cells. 

In this equation n is the normal defining the boundary segment associated with 
cell (k 0, (Vdr, t)>k,z is the velocity of the midpoint of the segment, and (V;+‘)i 
is the liquid velocity at the midpoint of the segment computed with the MAC area 
weighted interpolation formula as shown in Fig. 2. Clearly (VE+lyk,, is one of the 
iterates and must be recomputed each time the pressures and velocities are adjusted. 
The relaxation parameter and mesh width are d T, and 6, respectively. The formula 

---Lagrange boundary 

"ia = ?7-"18-"13 

'15 = "lb -"ll + "16 

'20 = '21 -"16+ "21 

FIG. 3. Determination of mesh velocities on the exterior sides of Eulerian boundary cells 
and assignment of boundary segment normals. 



128 VIECELLI 

shows that instead of adjusting the pressure proportional to the divergence or net 
flux out of a cell one adjusts it proportional to the flux across the boundary 
measured relative to coordinates fixed in the boundary. If liquid is flowing across 
the boundary the pressure will be increased until the outflow stops. Conversely 
if liquid is tending to separate from the boundary the pressure will decrease until 
the liquid flows tangent to the boundary. Flow separation is of course physically 
possible because negative pressures do not exist in a liquid. Thus if one assigns a 
physical meaning to the pressure along a portion of the boundary such as specifying 
the pressure on a free surface then cell pressures should not drop below the vapor 
pressure of the liquid. One can take this into account roughly by specifying that 
P$ be set equal to the vapor pressure whenver Eq. (9) produces a lower or negative 
pressure. Supercavitating flows are then possible [5]. 

Velocities at the exterior sides of the Eulerian boundary cells and other exterior 
points are necessary in the area weighting formula, and must be recomputed during 
each iteration sweep. These velocity components are determined in the same way 
as those on the open sides of free surface cells in the MAC method. In Fig. 3 
representative sections of boundary are shown in more detail. The original 
Lagrange boundaries are indicated by dotted lines, and the resulting boundary 
segments and normals are shown. Heavy dark lines outline the outer edges of the 
boundary cells. The values of the velocity components at the edges and outside 
the Eulerian boundary, where necessary are given, in terms of their interior 

PA = (aP4+6P,)/(a+6) 

PB = P,+b(Pq-P$/(6-b) 

PC = (cP*+6P3)/(c+6) 

FIG. 4. Pressure interpolating scheme. 
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neighbors for the two-dimensional plane case. In three dimensions with axial 
symmetry radius factors would be necessary to preserve continuity. 

In addition to calculating new cell pressures during each cycle of iteration one 
must also recalculate the velocity components. During iteration the sum of th.e 
old velocity component at time nd t, the advection and the viscous terms are stored 
in T$++,~ and [&++ which need to be computed only once. Changes in the new 
cell velocity iterates then depend only on changes in the gradient of the pressure 
iterates. In the MAC formulation pressure gradients across free surface-full cell 
boundaries were calculated based on pressures located at the cell centers, thoagh 

the actual free surface might be anywhere in a cell. However, improved accuracy 
can be obtained by placing the pressures at the location of the free surface instea.d 
of the cell center [2]. 

In the context of ABMAC this means that if one assigns the location of the 
boundary pressure to the center of the cell one should extrapolate to get the pres- 

nil 
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FIG. 5. Fist example of the derivation of an explicit boundary condition. 
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FIG. 6. Second example of the derivation of an explicit boundary condition. 

sure at the boundary, or alternatively if one assigns the pressure to the boundary 
point one should interpolate a cell centered pressure to use in the momentum 
equation. Figure 4 illustrates linear interpolation for the latter method. 

A real advantage of the simultaneous iteration method and Eq. (9) is that it 
gives a simple automatic way of including complicated boundary conditions. 
One could of course iterate only on the pressure in an explicit form of Poisson’s 
equation as in the MAC method; however, to do this one would have to write 
down explicit boundary conditions such that the flow would move tangent to the 
boundary. It can be done but appears to be a formidable task to accomplish with 
generality because there are so many possible special cases depending on the shape 
and orientation of the boundary. 

To illustrate equivalent explicit forms of the boundary condition, the stationary 
cases shown in Fig. 5 and 6 have been worked out. Substitution of the expressions 
for the velocity components into the interpolating formulas for the midpoint 
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velocity components and in turn substituting the resulting expressions into the 
boundary condition vG+l = rnut+l yields for the example in Fig. 5 

md 
uaz-l-- 6 Pk,, + %+1 ) - g &“+1,,+1 + g L,,+, - Bfl (1 

= -g [e,z+; - g b?;++t,t+1+ Yl&+J - m (1 - ;) 7;++,J9 .I 

and for the case shown in Fig. 6 

= 41 +;p,,,-: (;+;+qP,-,,,+ (~+~-~)p,_,,,+p,;,_,. 

Note that advection terms are computed only at the interior sides of boundary 
cells. In these formulas the pressure is assumed to be located at the center of the 
boundary cell, so that one would have to extrapolate to get the pressure at 
boundary point. Equations (10) and (11) illustrate the actual type of bound 
conditions being used. The presence of the variable coefhcients multiplying the 
pressures and the variable number of cells connected with a given boundary 
condition generally slows down any iterative method of solution so that there is a 
price to be paid for the convenience and generality of the method. 

This modification of the MAC free surface method to the calculation of curve 
moving wall boundaries illustrates the roughness of the original free surface 
treatment, i.e., no attempt is made to use the actual width of the open part of a 
boundary cell side in computing the advection terms or in calculating the diver- 
gence, yet fairly good results are obtained when test comparisons with known 
solutions are made. Perhaps one reason the method works is that i~cQmpr~~sible 
flow fields almost always vary smoothly and slowly so that one can extrapolate 
to get the velocity at free surface points without having to do elaborate momentum 
flux calculations. However there is certainly room for refinement if one wishes to 
expend the effort [8]. 

MARKER PARTICLES AND FREE SURFACES 

The marker particles do not perform any function in ABMAC calculations 
other than to indicate the position of any free surfaces that may be present. It is 
likely that in problems containing curved walls or flexible boundaries there will 
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be no physical free surfaces. In these cases there is no reason why one need include 
the marker particles. In fact, considerable machine time may be saved by elim- 
inating them. However, if free surfaces are present the marker particles are 
necessary to tell when liquid enters interior and boundary cells. The marker 
particles, assuming average densities, specify the fluid configuration with an 
uncertainty much less than the Eulerian mesh width. Because of this some finer 
critera other than just the knowledge that a boundary cell contains particles is 
necessary. We require in addition that 

(X, - X,) . n < 68, (12) 

where X, is the particle position, X, is the position of the midpoint of the boundary 
normal, n is the boundary normal, and E is some fraction of the cell width 6, 
typically l/4. Thus, we do not begin computing a pressure in boundary cells until 
the particles come within ~8 of the boundary segment. 

When free surfaces are present we also need to know how to treat cells containing 
the intersection of curved wall boundaries and free surfaces. The pressure at the 
intersection point should be equal to the ambient pressure, but because the 
pressure is defined only on the Eulerian net, it is sometimes not possible to zero 
the flux at the boundary consistent with vanishing divergence without introducing 
a pressure. This happens when the angle between the free surface and the boundary 
is small and the liquid is colliding with a wall producing a jet on a scale too fine 
to be resolved by the Eulerian mesh. We define an intersection cell to be one that 
contains liquid and has one or more empty interior or pressure surface neighbors, 
and one or more exterior neighbors. When this definition is satisfied, the pressure 
is set equal to ambient pressure and the velocities are adjusted directly. In most 
circumstances the liquid in the cell will be part of a much larger mass. When there 
are one or two liquid neighbors, the velocity components at the sides in contact with 
the liquid are preserved, and those at the open and boundary sides adjusted to 
make the velocity tangent at the boundary consistent with vanishing divergence. 
In the case of one liquid neighbor, the velocities at the opposite cell sides are 
assumed equal, and the component with both sides open or boundary is adjusted. 
In either case the flux at the boundary is a linear function of a single variable, and 
the zero is easily found. If the velocity at the boundary is initially directed away 
from the boundary, nothing need be done. The remaining possibility is that there 
are no liquid neighbors, as happens when a small isolated element strikes the 
boundary. In this case we set the component of the particle velocity normal to the 
boundary equal to zero, and preserve the tangential component. If a gravitational 
force is present we accelerate the particle velocities by the component of the 
gravitational vector tangent to the boundary. 
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STABILITY LIMITS ON THE TIME STEP 

There are three restrictions on the size of the time step, dt. First, it must not be 
greater than 6*/4v, where S is the smallest mesh size and v is the kinematic viscosity. 
This limit comes from the explicit difference form used to approximate the viscous 
diffusion terms in the momentum equations (1) and (2). Second, At should not 
greater than &3/j V Imax, where E is the boundary sensing parameter in Eq. (12) 
and I V Imax is the maximum magnitude of the velocity. This restriction 
prevents particles from moving outside the boundary during the cycle in which 
liquid first contacts the boundary. Finally, At must not exceed the stability limit 
imposed by the choice of difference scheme for the advection terms. 

When backward differencing is used in the advection terms At must not exceed 
S/l v lmm ~ When centered differencing is used there is no value of At which will 
guarantee stability. However, by adding a small amount of viscosity it is possible 
to damp out instabilities that would otherwise develop [9]. A truncation error 
analysis shows that one should choose v so that 

ne should note that At appears in the expression for the limit on the size of t 
relaxation parameter AT. Therefore when otpimizing the caIculation by ca~~ulat~~~ 
a new At at the end of each cycle, based on the current velocity field, one must also 
recalculate the relaxation parameter. 

INFLOW AND OUTFLOW BOUNDARY CONDITIONS 

An inflow boundary is easily included if one is content with uniform inflow 
velocity directed perpendicular to the Eulerian mesh boundary. One simply specifies 
that the normal components of the velocity along the boundary be set to the 
desired inflow velocity. For example, if one needs an inflow boundary along tke 
radial line Z = .2&.+ ; I = 1; all k, corresponding to the bottom edge of the 
mesh, one would set z+++ = vi?2 ; 1 = 1; all k. 

An outflow boundary is generally much more difficult to prescribe. One reason 
is that the physical flow in the region covered by the mesh depends upon the 
downstream motion outside the mesh. One way to treat an outflow is to make the 
mesh big enough so that the flow is essentially uniform by the time it reaches the 
boundary; then one may specify that the derivatives of the velocity components 
normal to the mesh boundary be zero. For example, if the radial line 2 = 2&-.+ ; 
I = 1; all k, is an outflow boundary one would specify vk++ = v~,~++ ; E = 1; ah k. 
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If the liquid is streaming at an angle to the boundary one also needs to specify a 
virtual u component lying just outside the mesh so that the u component advection 
will be calculated correctly when using the centered difference scheme. One would 
set uk,2-l = u~,~ ; I = 1; all k. 

This type of outflow boundary condition was used successfully in the test 
problems shown in Figs. 8 and 11; however difficulties may arise when the liquid 
is bounded everywhere by walls and there are no free surfaces. In that case there 
are an infinite number of solutions for the pressure field differing only by arbitrary 
additive constants. In these circumstances the iterative solution method may never 
converge unless one specifies the pressure at some point in the flow. One possibility 
is to pin the pressure at an outflow boundary; for example at the radial line 

Generate problem: n = 0, time = 0 ly- 

, 

I Generote new particles at inflow 
boundcfries I 

Regenerate the boundary segments 
and reva+ the Eulerion boundary cell flags 

FIG. 7. Flow Chart of the ABMAC program. 
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Z = Z,c,z-a ; I = 1; all k one could use (2b) to compute IJ~,~-+ with tk,E-g = 
tlc,l+t and P,,+, = 0 in a line of virtual cells just outside the bottom edge of the 
mesh. 

STEPS IN THE CALCULATIONAL CYCLE 

The first step is to calculate the advection, viscous diffusion, and gravitational 
acceleration terms in the momentum equations, add them to the old velocities an 
store the results in v and <. Then the simultaneous iteration technique is used to 
solve for the advanced time velocity components and the pressures. Next, velocities 
are adjusted in any cells containing the intersection of a free surface 
boundary. The particles are then moved. Note that when inflow and outbid 
boundaries are present it is necessary to add new particles in inflow cells and to 
remove particles when they move outside the mesh. 

Next the Lagrangian points defining the moving boundary are moved. T 
the boundary normals are regenerated and the boundary cell flags are reset. 
course, if the boundaries are stationary the normals and boundary cell flags are 
generated only once at the beginning of the problem and these steps are omitted. 
Finally the free surface cell flags are reset and the time and cycle index are 
incremented. Data are printed and cathode ray tube pictures are made if desired 
at the current time or cycle. The cycie of calculation is repeated until one has 
advanced the solution in time as far as desired. A flow chart of the program is 
given in Fig. 7. 

TEST CALCULATIONS 

One type of test involves comparison of numerically computed asymptotic 
solutions with those obtained by the hodograph method. One starts the numerical 
time dependent solution in some configuration far from the steady state and then 
hopes to see it approach the asymptotic result. Hodograph solutions were worked 
out for (1) a jet from a nozzle striking a wedge, and (2) a free jet impinging on a 
plate at arbitrary angle of attack. In the ABMAC calculations the liquid enters 
from the left, and splashes off the wedge or plate. Inflow and outflow mesh 
boundaries allow fluid to continue streaming in and out so that eventually a 
steady flow develops. The free surface configurations and the pressure profiles for 
these flows are then compared with the hodograph results. 

The wedge calculation was done on a 30 x 40 mesh of square cells wit 
size equal to .5. The nozzle width is 27~, the inflow velocity is -763 and the wedge 
angle is 60”. The plate calculation was done on a 30 x 30 mesh of square cells 
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with zone size equal to .25. The plate angle of attack is 84.12” and the free jet 
width is rr. In both cases the free stream velocity is one. The flows are independent 
of density and no gravitational forces are present. The initial particle density is 
nine per cell. Centered spatial differencing was used with stabilizing kinematic 
viscosities of .015 and .05 for the plate and wedge respectively. These viscosities 
are small in the sense that they are of the same order of magnitude as the coefficients 
of the diffusion-like truncation errors in the difference equations. In terms of 
physics they would probably be considered large since the corresponding Reynolds - 
numbers, using the jet width as the characteristic length, are 

J+l”~ 9 ____ es 209 
.015 

and NW = q m 126. 

FIG. 8. First test problem: a jet from a nozzle striking a wedge at times 0,3.55,7.18, and 24.51. 
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FIG. 9. First test problem: comparison of ABMAC free surface configuration at time 24.51 
(data points) with hodograph solution (solid lines). 

0.61 I I I I I 

x 

FIG. 10. First test problem: comparison of ABMAC pressures at time 24.51 (data points) 
with hodograph solution (solid iines). 
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FIG. 11. Second test problem: free jet striking a plate at times 0, .52, 2.25, and 15.46. 

The coefficients of the diffusion-like truncation errors are negativeforthespatially 
centered difference scheme, hence the input viscosity coefficient is chosen to 
insure that it will be larger than the absolute value of any of these coefficients, 
as indicated in inequality (13). The truncation coefficients are different for each 
momentum component and depend on the velocity and its gradient, which change 
with position and time. This means that one cannot assign a physically well defined 
viscosity to a calculation unless the input viscosity coefficient is much larger than 
any of the truncation coefficients. Hence the above Reynolds numbers represent 
only rough estimates since the input viscosity coefficients are only slightly larger 
than the maximum absolute value of the truncation coefficients. Because the 
truncation errors are always present one cannot hope to calculate exactly flows 
with Reynolds numbers above a few hundred with present computing machines. 
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Nevertheless, finite difference calculations can be used to obtain ap~rox~~~~ate 
solutions in many problems characterized by physically large Reynolds fibers 
as can be seen from the following comparison with the inviscid hodograph theory, 

The results of the wedge calculations are shown in Figs. 8,9, and 10 those for 
the plate in Figs. 11, 12, and 13. The first figure of each set shows the AB 
initial configuration, intermediate times when the flow pattern is changing and a 
very late time when the pattern has essentially become stationary. The next figure 
in each set shows the comparison between the asymptotic ABMAC free surface 
position (indicated in the figures by small circles) and those calculated by the 
hodograph method (indicated by the sohd lines). The final figure in each set shows 
the comparison between pressures calculated by ABMAC and the hodograph 
method. The ABMAC calculations were done without pressure interpolation in 
either the free surface or boundary cells. The Eulerian zoning was also fairHy 
rough: the lengths of the wedge and plate are II and 6 zones, respectively. 

FIG. 12. Second test problem: comparison of ABMAC free surface configuration at time 
15.46 (data points) with hodograph solution (solid lines). 
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FIG. 13. Second test problem: comparison of ABMAC pressures at time 15.46 (data points) 
with hodograph solution (solid lines). 

EXAMPLES OF FLEXIBLE MOVING BOUNDARIES 

As an illustration of the moving boundary capability ABMAC has been used 
to calculate the motion of a liquid as it is expelled from the top of a cylindrically 
symmetric heart-shaped flexible bag. The velocity of the ith Lagrangian point 
defining the bag is taken to be 

I vi I = 5COS~grax e-(t-~5)2/*2178 cm se&. 

In this formula Bi is the angle between the axis passing through the closed end of 
the bag and a ray extending from the origin to the ith Lagrangian boundary point. 
The velocity of the ith point is taken to be directed along the ray toward the origin 
at the center of the bag. Thus the point specifying the edge of the bag opening 
remains fixed while the inward motion of the walls increases to a maximum at the 
closed end of the bag. 

There are 18 axial and 13 radial zones of unit width and the origin is located 
10.5 zones from the lower mesh boundary, A viscosity of .l g cm-l set-l and 
density 1.0 gem-3 were used. The radius of the opening at the top is 5 cm. Figure 14 
shows the motion of liquid particles and the velocity field as the bag contracts, 
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FIG. 14. Flexible wall bag problem: displacements and velocities at times Q., .l, .4, and .7 sec. 

expelling the liquid through the hole in the top. With this particular geometry 
and bag motion the maximum jet velocity attained on the axis was 36 cm se+ 
and the pressure reached a peak of 670 dyne cm-2 in the center of the bag. 

A second example shows the effect of ground .motion in generating a water 
column and wave. Initially a layer of water 2 ft thick lies at rest on the grotm 
surface. 
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FIG. 15. Water wave problem: liquid configuration at times 0, .090, .147, .2IO, .286, ,551, 
.855, and 1.044 sec. 

The velocity of the ground is given by 

+ cos - cos ft set-l IVl= 1 $ [l (q)][l (-?$-)I -: 2 r2.t ret 

0 -4<x<o .3 < .f 
0 x < -4. O<t 
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and is directed vertically. Thus a mound 4 ft high is formed in a time of .3 set and 
the maximum velocity attained is 30 ft sec- l. Figure 15 shows the sequence of 
events. 

As the mound forms it lifts and accelerates the water layer resting on it. At time 
.I5 sec. the ground surface begins to decelerate and the water layer separates from 
the mound. Its momentum carries it upwards in an arc so that a vertica 
of water forms. This column continues moving outwards while collapsing into an 
outward moving wave. At the same time water sloshes back up the sides of the 
mound. The calculation was done in plane geometry on a 60 x SO mesh with zone 
width .2 ft and gravitational acceleration 32 set-2. In this example the vapor 
pressure and the ambient pressure were set to zero. 
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